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An enyne dimer (1) of methyl propiolate was reacted with amines to form dimethyl (E,E)-2-amino-2,4-
hexadiene dioates with remarkable chemospecificity, regiospecificity, and stereospecificity. This enyne
was also reduced by Ph3P stereospecifically to form dimethyl (E,E)-muconic ester. Hydrogenation of
the conjugated amino-diene led to an efficient production of dimethyl a-aminoadipate. A lactam of
dimethyl a-aminoadipate was obtained in high yield by simply varying the hydrogenation conditions.

� 2009 Elsevier Ltd. All rights reserved.
Propiolates are very useful functional precursors in organic syn-
thesis.1–10 For example, the nucleophilic addition of alkyl propio-
lates to aldehydes can generate c-hydroxy-a,b-acetylenic esters
of broad synthetic applications.1 Propiolates can also undergo
many other reactions such as Diels–Alder reaction,2 additional
cycloadditons,3 the Baylis–Hillman-type reaction,4 ene reaction,5

ring annulation,6 coupling with alkyl halides,7 hydrosilylation,8

reaction with ketene silyl acetals,9a and conjugate addition.9b

Dimerization of propiolates in the presence of bases can produce
hex-2-en-4-yne dioates. For example, Ramachandran found that
a catalytic amount of DABCO (<1%) catalyzed this dimerization at
0 �C in minutes in 99% yield (Scheme 1).11 In the presence of Lind-
lar’s catalyst, the (E)-hex-2-en-4-yne dioates were hydrogenated to
(E,Z)-muconic acid diesters for natural product synthesis.
ll rights reserved.
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Scheme 1. Catalytic dimer
In our laboratory, we are interested in studying the reactivity of
methyl propiolate and its derivatives.1h,i The DABCO-catalyzed effi-
cient synthesis of (E)-hex-2-en-4-yne dioates from propiolates
prompted us to explore the synthetic application of these com-
pounds.12 Herein, our work on the reactions of a propiolate dimer
with amine and phosphine nucleophiles and an efficient synthesis
of dimethyl a-aminoadipate is reported.

Dimethyl (E)-hex-2-en-4-yne dioate (1) was obtained by treat-
ment of methyl propiolate with DABCO (1%) in THF at 0 �C in
almost quantitative yield.11 When 1 was reacted with 1 equiv of
dibenzylamine in CH2Cl2 at room temperature for 16 h, compound
2 was obtained in 99% yield (Scheme 2).13 This nucleophilic addi-
tion proceeded with remarkable chemospecificity, regiospecificity,
and stereospecificity. That is, the reaction occurred on the alkyne
unit rather than the alkene unit; at position 2 rather than 3; and
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ization of propiolates.
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Scheme 2. Reactions of enyne 1 with nucleophiles.
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Scheme 3. Synthesis of dimethyl a-aminoadipate 5.
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giving only the (2E,4E)-stereoisomer. In C6D6, the 1H NMR signals
of the three vinyl protons of 2 were observed at d 7.86 (dd,
J = 14.7, 12.0 Hz, 1H, 4-H), 5.73 (d, J = 14.7 Hz, 1H, 5-H), and 5.27
(d, J = 12.0 Hz, 1H, 3-H). The large coupling constancy between
5-H and 4-H indicates a 4E configuration. The Noesy NMR experi-
ment of 2 showed correlation between 3-H and those of the
benzylic protons, indicating a 2E configuration. The regioselectivity
of the amine addition is apparently controlled by the remote ester
group rather than the adjacent one. This unusual regioselectivity is
consistent with Houk’s observation in a Diels–Alder reaction of this
enyne.12

We also investigated the reaction of enyne 1 with Ph3P.14 Under
nitrogen in dry THF solution, no reaction between 1 and Ph3P was
observed. However, when H2O (1 equiv) was added, 1 was reduced
stereospecifically by Ph3P to give dimethyl (E,E)-muconic ester 3,15

a synthetically useful diene (Scheme 2).12,16,17

The high yield formation of 2 from 1 under the mild reaction
conditions encouraged us to use this method to develop a new syn-
thesis of dimethyl a-aminoadipate. a-Aminoadipate, a product of
lysine degradation in mammals,18 has attracted considerable re-
search activity in neuroscience, biosynthesis, organic synthesis,
and peptide chemistry.19 For example, a-aminoadipate is probably
best known as an experimental gliotoxin, which can influence var-
ious elements of glutamatergic neurotransmission.20 a-Aminoadi-
pate is also an essential intermediate in lysine biosynthesis in
fungi21a and a well-known precursor in the synthesis of penicillin
or cephalosporin.21b Its derivatives have been used as effective
agents for the treatment of antileukemic, rheumatoid arthritis,
psoriasis, and other autoimmune diseases.22 Usually, a-aminoadi-
pate was obtained from the biosynthesis and catabolism of lysine
in Penicillium chrysogenum.23 A number of synthetic methods for
the preparation of a-aminoadipates were also reported.24
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We combined the catalytic dimerization of methyl propiolate

and the nucleophilic addition of benzylamine into a one-pot reac-
tion to generate the conjugated amino-diene 4 in 94% yield with
the same chemospecificity, regiospecificity, and stereospecificity
as the formation of 2 from the dibenzylamine addition (Scheme
3).25a Catalytic hydrogenation of 4 in the presence of Pd/C and
H2O gave the desired dimethyl a-aminoadipate 5 in almost quan-
titative yield.25b In this step, the hydrogenation of the diene and
debenzylation occurred simultaneously. This two-pot preparation
of 5 involves less number of steps than the previously reported
synthesis of the racemic a-aminoadipates.24a,b

In the above catalytic hydrogenation of 4, addition of H2O was
necessary. We found that in the absence of H2O, an intramolecular
cyclization of dimethyl a-aminoadipate was observed to give the
lactam 6. The addition of H2O probably deactivated the carbon sup-
port that might be responsible for the intramolecular condensa-
tion. The formation of 6 was optimized by conducting the
hydrogenation of 4 in the presence of Pd/C under 200 psi H2 in
methanol which gave the lactam 6 in 99% yield in 1 h.26,27 This
reaction provides a very convenient way to synthesize a useful
lactam.
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In summary, we have studied the reactions of the methyl propi-

olate dimerization product 1 with the amine and phosphine nucle-
ophiles. The reaction of 1 with dibenzylamine or benzylamine has
exhibited unusual chemospecificity, regiospecificity, and stereo-
specificity to generate the corresponding conjugated amino-diene
products. The base-catalyzed dimerization of methyl propiolate
and the benzylamine addition can be conducted in one-pot to form
4 which can then be hydrogenated to give dimethyl a-aminoad-
pate, a molecule of significant biological interests. This is a new
and efficient synthesis of an a-aminoadpate. Modification of the
hydrogenation condition allows an easy preparation of lactam 6.
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